CEA-Leti Selected to Coordinate Two EU Projects for Developing ‘First-Class’ 6G Capabilities and Contributing to Standardization
Engaging Multiple EU Partners, the Projects Will Apply Intelligent Sensing and AI-Enabled Learning Technologies
GRENOBLE, France – April 25, 2024 – As part of the European Union’s drive to support a multifaceted approach to addressing 6G challenges and promises, CEA-Leti has been chosen to coordinate two projects to help build first-class 6G technology capabilities and boost standardization efforts across Europe.
The two projects were among 27 chosen in a competitive proposal process by an EU partnership that divided €130 million between the projects. “These projects present a significant stride towards advancing smart networks and services, offering breakthrough innovations, experimental platforms and large-scale trials, driving world-class research and shaping the world’s digital connected future,” said the group, called the Smart Networks and Services Joint Undertaking (SNS JU).
6G-DISAC (Distributed Intelligent Sensing and Communication) and 6G-GOALS (Goal-Oriented AI-enabled Learning and Semantic Communication Networks) launched their three-year projects in January with multiple EU collaborators.
The two projects mark the first time a single RTO or company has been chosen to coordinate two competitive EU proposals in the same initiative. CEA-Leti has coordinated several EU projects, including the recently completed RISE-6G project. That SNS JU effort developed a disruptive new concept as a service for wireless environments by dynamically controlling wireless communication for brief, energy-efficient and high-capacity communications on a variety of surfaces, such as such as walls, ceilings, mirrors and appliances.
6G-DISAC
This project will develop and innovate on a widely distributed intelligent infrastructure compatible with both real-world integration constraints, new semantic and goal-oriented communication and sensing approaches, and the flexibility requirements of future 6G networks. It will apply theoretical approaches and operational and standards-compatible, distributed joint communication and sensing, by leveraging the expertise of world-leading network vendors, verticals, SMEs, research laboratories and academic institutions spanning the value chain.
Current approaches to integrated communication and sensing use centralized architectures and pass sensed information through a centralized controller.
“This project will bring the integrated sensing and communication (ISAC) vision into reality, going well beyond the usual restrictive standalone or localised scenarios, by adopting a holistic perspective, with large numbers of connected users and/or passive objects to be tracked,” said Emilio Calvanese Strinati, coordinator of the project and CEA-Leti’s smart devices & telecommunications strategy program director.
“With demonstrations that validate the vital 6G-DISAC concepts, the project will revolutionise various applications, from extended reality and robot-human interaction to vehicular-safety functions and improving communication key performance indicators (KPI) with sensing-aided communications,” he explained.
In addition to defining use cases and designing an innovative network architecture, the 11 6G-DISAC partners will develop novel physical-layer waveforms, distributed sensing and communications methods, optimised resource-allocation methods and protocols.
Specific targets include:
tracking connected user equipment (UE) and passive objects,
performing ISAC with many distributed base stations, efficient distributed signal processing and machine learning for semantic ISAC, and
incorporating extremely large multiple-input, multiple-output (MIMO) technologies and reconfigurable intelligent surfaces, and intelligent sensing activation.
“While addressing these fundamental and practical challenges, the team will focus on distributed implementation of ISAC, unlocking real sensing applications and providing a multi-perspective view of networks in space and time for tangible communication gains,” Calvanese Strinati said.
6G-GOALS
This project is designed to reduce data traffic by conveying only the most relevant information and produce data-efficient, robust and resilient protocols that can adapt to network conditions and communication objectives using modern AI/ML techniques.
“As wireless mobile communication requires ever-higher data rates and 5G’s scope expands to include massive and ultra-reliable low-latency links, wireless evolution has been pressed to solve the technical problem of reliable data exchange between two end-points,” said project coordinator Calvanese Strinati.
“The 6G-GOALS project will take the wireless system design to its next stage by considering the significance, relevance and value of the transmitted data and transforming the potential of the emerging AI/ML-based architectures into a semantic and goal-oriented communication paradigm, offering a solid step toward cooperative generative AI technologies,” he said.
Semantic communication is instrumental to induce reasoning and shared understanding among intelligent agents by exchanging pragmatically selected information in which its meaning to the receiver is designed to efficiently accomplish a goal or a task. With current approaches, data is sensed and transferred from sensors to the destinations without prior semantic extraction functions.
A recent paper written by 6G-GOALS participants noted that advances in AI technologies have expanded device intelligence, fostering federation and cooperation among distributed AI agents. These advancements impose new requirements on future 6G mobile network architectures.
“To meet these demands, it is essential to transcend classical boundaries and integrate communication, computation, control, and intelligence,” the paper, “Goal-Oriented and Semantic Communication in 6G AI-Native Networks: The 6G-GOALS Approach”, reports.
“These projects are fundamental to explore the capabilities of AI/ML solutions on the networks of the future, especially dealing with joint communication and sensing and semantic communications,” said Mauro Boldi Renato, EU project program coordinator at TIM (Telcom Italia). “Working with CEA-Leti represents a solid basis for their success and for bringing European industry towards implementation of 6G around 2030.”
“The exploitation of 6G-DISAC and 6G-GOALS project results will represent a transformative step for manufacturers and 6G industrial players, like NEC Corporation, by fostering the development of distributed intelligent networks and semantic/AI-driven communication strategies,” said Vincenzo Sciancalepore, principal researcher at NEC Laboratories Europe GMBH/ Germany and a member of the 6G-DISAC team. “Such an unprecedented approach will enable more efficient, flexible, and responsive network infrastructures that can support advanced applications, such as extended reality and automated mobility, meeting the increasing demand for high-capacity, low-latency and sustainable communication.”
6G-DISAC Partners
Coordinator: CEA-Leti/France
Technical Manager: Chalmers Tekniska Hogskola AB/Sweden
Innovation Manager: Nokia Networks/ France
Telecom Italia Spa/Italy
Orange S.A./France
Ethniko Kai Kapodistriako Panepistimio Athinon/Greece
Institut Polytechnique De Bordeaux/France
NEC Laboratories Europe GmbH/Germany
NEC Italia S.P.A/Italy
Robert Bosch GmbH/Germany
RadChat AB/Sweden
6G-GOALS Partners
Coordinator: CEA-Leti/France
Technical Manager: Consorzio Nazionale Interuniversitario per le Telecomunicazioni/Italy
Innovation Manager: NEC Laboratories Europe GMBH/ Germany
NEC Italia S.p.A/Italy
Telecom Italia S.p.A/Italy
Eurecom GIE/France
Aalborg Universitet/Denmark
Hewlett-Packard/France
Hewlett-Packard Italiana S.R.L/Italy
Toshiba Europe Limited UK
Imperial College of Science Technology and Medicine UK
Singapore University of Technology and Design
About CEA-Leti (France)
CEA-Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 2,000 talents, a portfolio of 3,200 patents, 11,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley, Brussels and Tokyo. CEA-Leti has launched 75 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.
Technological expertise
CEA has a key role in transferring scientific knowledge and innovation from research to industry. This high-level technological research is carried out in particular in electronic and integrated systems, from microscale to nanoscale. It has a wide range of industrial applications in the fields of transport, health, safety and telecommunications, contributing to the creation of high-quality and competitive products.
For more information: www.cea.fr/english
Press Contact
Agency
Sarah-Lyle Dampoux
+33 6 74 93 23 47